Skip to main content

Section 1.2 Algebra

This section covers some basic algebra skills needed in this course.

Subsection 1.2.1 Basics for lines

Let \(L\) be a line in the \(x,y\)-plane that is not vertical (that is, not parallel to the \(y\)-axis). Visualize traveling along the line \(L\) from a starting point \((A,B)\) to a final point \((P,Q)\text{.}\) From start to finish, your position along the \(x\)-axis will change from \(A\) to \(P\text{.}\) The deviation of \(P\) from \(A\) (also called the horizontal displacement from \((A,B)\) to \((P,Q)\)) is called the run of your trip.
\begin{equation*} \text{ run } = P-A \end{equation*}
Likewise, your position along the \(y\)-axis will change from \(B\) to \(Q\text{.}\) The deviation of \(Q\) from \(B\) (also called the vertical displacement) is called the rise of your trip. See Figure Figure 1.2.1.
\begin{equation*} \text{ rise } = Q-B \end{equation*}
The fraction rise/run is called the slope of the line \(L\text{.}\)
\begin{equation} \text{ slope } = \frac{ \text{ rise }}{\text{ run }}=\frac{Q-B}{P-A}\tag{1.2.1} \end{equation}
Solving (1.2.1) for rise, we have
\begin{equation*} \text{ rise } = { \text{ (slope)}}{\text{(run) }} \end{equation*}
and solving (1.2.1) for \(Q\text{,}\) we have
\begin{equation} Q=\text{ (slope)(run)} + B = \text{ (slope)}(P-A)+B.\tag{1.2.2} \end{equation}
Figure 1.2.1. Rise and run.
Here is a basic problem involving lines: You are given a line \(L\text{,}\) the slope \(m\) of \(L\text{,}\) a starting point \((A,B)\) on \(L\text{,}\) and the \(x\)-coordinate \(P\) of a final point \((P,Q)\) on \(L\text{.}\) Your task is to find \(Q\text{.}\)
The solution uses (1.2.2) broken into three these steps:
  1. Find the run using \(\text{ run } = P-A\text{.}\)
  2. Find the rise using \(\text{ rise } = \text{ (slope)(run)}\text{.}\)
  3. Find \(Q\) using \(Q=\text{ rise } + B\text{.}\)

Exercises 1.2.2 Algebra practice problems

1.

Consider the equation \(A = \frac{BC + D}{E}\text{.}\)
  1. Solve for \(D\text{.}\)
  2. Solve for \(B\text{.}\)
  3. Solve for \(E\text{.}\)
Answer.
  1. \(\displaystyle D=AE-BC\)
  2. \(\displaystyle B=\frac{AE-D}{C}\)
  3. \(\displaystyle E=\frac{BC+D}{A}\)

2.

Names of quantities in the top row of the table below match Subsection 1.2.1. Find the values of run, rise, and \(Q\) for each row of the table.
\begin{align*} A \amp\spacer\amp B \amp\spacer\amp \text{slope} \amp\spacer\amp P\\ \rule{.5in}{.1ex} \amp \amp \rule{.5in}{.1ex} \amp \amp \rule{.5in}{.1ex} \amp \amp \rule{.5in}{.1ex}\\ 20.13 \amp\spacer\amp 15.86 \amp\spacer\amp 1.1 \amp\spacer\amp 24.8\\ 20.13 \amp\spacer\amp 15.86 \amp\spacer\amp 1.1 \amp\spacer\amp 17.5\\ 103.20 \amp\spacer\amp 26.78 \amp\spacer\amp -0.65 \amp\spacer\amp 110.0\\ 103.20 \amp\spacer\amp 26.78 \amp\spacer\amp -0.65 \amp\spacer\amp 95.0 \end{align*}
Answer.
\begin{align*} A \amp\spacer\amp B \amp\spacer\amp \text{slope} \amp\spacer\amp P \amp\spacer\amp \text{run} \amp\spacer\amp \text{rise} \amp\spacer\amp Q\\ \rule{.5in}{.1ex} \amp \amp \rule{.5in}{.1ex} \amp \amp \rule{.5in}{.1ex} \amp \amp \rule{.5in}{.1ex} \amp \amp \rule{.5in}{.1ex} \amp \amp \rule{.5in}{.1ex} \amp \amp \rule{.5in}{.1ex} \\ 20.13 \amp\spacer\amp 15.86 \amp\spacer\amp 1.1 \amp\spacer\amp 24.8 \amp\spacer\amp 4.67 \amp\spacer\amp 5.14 \amp\spacer\amp 20.10\\ 20.13 \amp\spacer\amp 15.86 \amp\spacer\amp 1.1 \amp\spacer\amp 17.5 \amp\spacer\amp -2.63 \amp\spacer\amp -2.89 \amp\spacer\amp 12.97\\ 103.20 \amp\spacer\amp 26.78 \amp\spacer\amp -0.65 \amp\spacer\amp 110.0 \amp\spacer\amp 6.80 \amp\spacer\amp -4.42 \amp\spacer\amp 22.36\\ 103.20 \amp\spacer\amp 26.78 \amp\spacer\amp -0.65 \amp\spacer\amp 95.0 \amp\spacer\amp -8.20 \amp\spacer\amp 5.33 \amp\spacer\amp 32.11 \end{align*}